

INFORMATION, ELECTRONICS AND SURVEILLANCE DEPARTMENT

ADVANCED MULTIFUNCTION RF SYSTEMS PRESENTATION TO MR. HUGH MONTGOMERY/OPNAV N91 10 JUNE 1997

- BACKGROUND
- NAVY PAYOFF
- ONR PROGRAM OBJECTIVES
- ONR PROGRAM FOCUS
- PROPOSED DEMONSTRATION SYSTEM
- ENABLING TECHNOLOGY PROGRAM
- SUMMARY

MULTIFUNCTION RF SYSTEMS APERTURES ON DDG-56

- 28 COMMUNICATION ANTENNAS (BELOW 1 GHz)
- 18 HF-DF ANTENNAS
- 2 COMMUNICATION ANTENNAS (ABOVE 1 GHz)
- 13 RADARS/ILLUMINATORS/IFF ANTENNAS
- 16 EW ANTENNAS
- 4 OTHER ANTENNAS

81 - TOTAL

RF FUNCTIONAL GROUPS

Comms/Da	ıta	Fire Contro	ol Radar
HF	6	SPG-62	3
VHF	6	CIWS	2
UHF	14		
EHF	2		
LAMPS	4	EW	
Other	3		
CEC	1	SLQ-32	4

Navigation		Special	
TACAN	1	IR	1
GPS	2	Velocimeter	1
IFF	4	RADIAC	4
Omega	1	Combat DF	21

Search Radar

SPS-64 1 SPS-67 1 SPY-1D 4

MULTIFUNCTION RF SYSTEMS

OLD PARADIGM:

SEPARATE RF SYSTEMS FOR INDIVIDUAL RADAR, COMMUNICATION, AND EW (ESM & ECM) FUNCTIONS

NEW PARADIGM:

RF SYSTEMS WITH INTEGRATED RADAR, COMMUNICATION, AND EW (ESM & ECM) CAPABILITIES

Radar

MULTIFUNCTION RF SYSTEMS NAVY PAYOFF

COST

Reduced Life Cycle Cost and Manning Through Commonality

STEALTH

Signature Reduction Built in, Not Added On

LOGISTICS

Logistics Commonality

CAPABILITIES

Flexibility in Resource Allocation

Enhanced Topside Design, with Reduced Topside Weight,

Moment, Volume and Number of Antennas

EM Compatibility Built in, Not Arranged Out

Growth of Combat Capability Without Adding New RF Systems

and Accomodation of Legacy Systems

Maintain Original RF System Performance with Reduced Blockage

Reduced Hand-off Time Between Functions

Improved Survivability

ONR RF PROGRAM OBJECTIVES

- DEMONSTRATE POTENTIAL MULTIFUNCTION SYSTEM ARCHITECTURES
- IDENTIFY KEY ENABLING TECHNOLOGIES
- CONDUCT RISK REDUCTION EXPERIMENTS

ONR PROGRAM FOCUS

- STEALTH/COST
 - Minimize Stand-Alone Systems/Components & Manning
- BANDWIDTH
 - 500 MHz to 20 GHz
- FUNCTIONALITY
 - Surveillance, Fire Control, ESM(ES), ECM(EA), Comms/Data Links

Advanced MultiFunction RF System Management Plan

PROPOSED DEMONSTRATION SYSTEM

SYSTEMS PROGRAM EXECUTION

PLAN

STUDY DESIGN/ANALYSIS

CONCEPT DEFINITION RFP

TECHNOLOGY IDENTIFICATION

CONTRACTOR STUDIES

TECHNOLOGY CONTRACTS

TESTBED DESIGN

TESTBED DEVELOPMENT

SYSTEM VALIDATION

TRANSITION OPPORTUNITY

FY96 FY97 FY99 FY01 FY98 FY00

ACI AND OTHER TECHNOLOGY PROGRAMS

FY95

STATUS

Navy Lab Team Analysis Suggests Pursuit of a Dual Aperture (Transmit and Receive).

Developed Concepts

Provides Ever Increasing Capability

Key Enabling Technologies Identified.

One Navy Lab & Four Industry Navy Teams Developing & Analyzing System Concepts & Identifying Critical Technologies

Critical Technology Workshops Hosted to Identified Opportunities for Addressing Technical Shortfalls

Organized Aperture Working Group Composed of Principal Acquisition Users to Provide Oversight & Guidance to Demonstration Program

MULTIFUNCTION RF SYSTEM STUDY

Performing Organizations Include NRL, NSWC, NAWC, and NRaD.

Initial Study Results Include:

Description of the Advantages of Separate Transmit and Receive Apertures

Lower Cost of Receive Modules Motivates Use of Larger Receive Aperture.

Nominal Multifunction RF Systems Concepts at Varying Levels of Complexity

With Dynamic Allocation of Subarrays

Subarrays/Arrays Transmit/Receive Some/All Signals Simultaneously.

Identified Critical Issues and Enabling Technologies

RF Amplifiers With High Power, Efficiency and Linearity.

High Performance: A/D Converters, STALO, Filters

Photonics (for Signal Distribution, Control of Phased Arrays, Etc.)

Wideband Radiating Elements

Dynamic RF Resource Allocation/Management/Optimization

Transmit/Receive Isolation

MULTIFUNCTION RF SYSTEMS CONCEPT #2

TRANSMIT ARRAY

RECEIVE ARRAY

SYSTEM CONCEPT:

DYNAMIC ALLOCATION OF TRANSMIT SUBARRAYS DYNAMIC ALLOCATION OF RECEIVE SUBARRAYS

- EACH RECEIVE SUBARRAY PERFORMS MULTIPLE SIMULTANEOUS FUNCTIONS (WITH CONSTRAINTS)

ENABLING TECHNOLOGIES:

HIGH PERFORMANCE DYNAMIC FILTERS/DIPLEXERS PRACTICAL PHOTONIC CONTROLOF PHASED ARRAYS

MULTIFUNCTION RF SYSTEMS CONCEPT #4

TRANSMIT ARRAY

RECEIVE ARRAY

SYSTEM CONCEPT:

TRANSMIT ARRAY TRANSMITS ALL SIGNALS ENTIRE RECEIVE ARRAY RECEIVES ALL SIGNALS

ENABLING TECHNOLOGIES:

HIGH POWER LINEAR AMPLIFIERS
HIGH PERFORMANCE A/D CONVERTERS
DIGITAL BEAMFORMING

ONR'S ADVANCED MULTIFUNCTION RF SYSTEMS (AMRFS) INITIATIVE

ONR's AMRFS BAA (03 OCT 1996 CBD) Requested That Proposers:

Describe Ship and Aircraft Multifunction RF Systems Concepts

Discuss Critical Issues Such As Antenna Design, Isolation, Transmit and Receive Modules, Power Supply, Beamforming, Signal Processing, Resource Management, Etc.

Identify Initial Demonstration of Simultaneous Multiple RF Functionality

Develop an Open-Architecture Multifunction RF System Testbed That:

Operates From C Through Ku Bands

Demonstrates at Least Four RF Functions: Radar, ESM, ECM and Comms

Supports Integration and Validation of New/Emerging Technologies

Identify Technologies and Concepts Necessary for Higher Levels of Integration.

Four Efforts (Out of Six Proposals) Have Been Initiated:

Hughes Radar and Communication Systems (M. Burke)

Lockheed Martin Government Electronic Systems (W. Mulqueen)

Northrop Grumman Electronic Sensors and Systems Division (L. Williams)

Raytheon Electronic Systems (M. Sarsione)

APERTURE WORKING GROUP

<u>NAME</u> <u>ORGANIZATION</u>

NEIL BARON NAVSEA

RICHARD BRITTON PEO (SC/AP)

DOUGLAS MARKER PEO (TAD)

STEVE VIPAVETZ CV-X

LARRY TRIOLA NSWCDD/PEO (SC/AP)

CHUCK CAPOSELL NAVAIR

CAPT GARY PETERSON CSA

MUN WON FENTON NAWC

CDR JON SHARPE SPAWAR

PAUL HUGHES NRL

BOBBY R. JUNKER ONR

WAYNE NICHOLS ONR

CAPT OLIVER H. PERRY ONR

ENABLING TECHNOLOGIES STATUS AND ACCOMPLISHMENTS

WIDEBAND RF TECHNOLOGIES

Current Program Emphasis

Wide Bandgap Semiconductor Amplifiers - M. Yoder, ONR

Hybrid Super/Semiconductor A/D Converters - D. Van Vechten, ONR

Highly Stable STALOs - D. Van Vechten, ONR

Highly Discriminating Wide Bandwidth Filters - D. Van Vechten, ONR

Photonic Control of Phased Arrays - W. Miceli, ONR

Structurally Embedded Antennas - S. Fishman, ONR

Wide Bandwidth Radiating Elements - W. Miceli, S. Fishman, ONR

Additional Technology Needs

Direct Digital Beamforming

Dynamic RF Resource Allocation/Management/Optimization

Transmit/Receive Isolation

WIDE BANDGAP SEMICONDUCTOR AMPLIFIERS

Wide Bandgap Electronic Materials (e.g., Silicon Carbide - SiC) and Devices Have Superior Efficiency and Power Handling Capabilities

Traveling Wave-Controlled Electron Ejecting Cathodes

Gun, Electron Injection Semiconductor Hybrid Amplifiers (GEISHA)

Insulated Gate FET (IGFET) Low Power, Linear Microwave Amplifiers.

Wide Bandgap Semiconductor Amplifiers Will Provide:

High Linearity, With Intermodulation Products at Least 28 dB Below Fundamental, Vice 18 dB for Conventional Solid State Amplifiers

High Dynamic Range

Two Decades or Greater Instantaneous Bandwidth

Increase efficiency from 40% to 60% (minimum) for Conventional Linear Amplifiers

Require Less Prime Power and Cooling

Longer-Life Devices With New Cathodes W/O Built-in Wear-Out Mech.

WIDEBAND GAP TRANSISTORS

- 1. Materials: Silicon Carbide (SiC) and/or Gallium Nitride (GaN)
- 2. Device Types:
 Bipolar, Field Effect, Static Induction, & Permeable Base, & GEISHA
- 3. Linear, Efficient (>60%) Performance Projections:

POWER OUT AT VARIOUS FREQUENCY:

UHF: 50,000 Watts

S-Band:

X-Band: > 200 Watts at 10 Ghz

Ku-Band: > 50 Watts at 18 Ghz

Cold Cathode GEISHA First Prototype

Clutter Dynamic Range

ACI A/D Objective 110

Lab Limit Today 99 dB

Highest Clutter 96 dB

Lab Capability 78 dB

Fielded 66 dB System 54 dB

System Noise 0 dB

Processor -3 dB Resolution

-10 dB

-20 dB

HYBRID SUPERCONDUCTOR/SEMICONDUCTOR ANALOG-TO-DIGITAL CONVERTERS

A/D Converters with 20MHz Sampling with 20-Bit Quantization

Superconducting/Semiconducting ADCs Will Provide:

Enhanced Dynamic Range To Address High Clutter/Littoral Environments

Digital Synthesis of Wideband Radar Waveforms

Fewer Down-Conversion (STALO Mixer) Stages

Ultimately, an All-Digital Receiver with Reduced Size and Weight

HIGHLY STABLE STALOs

High T_c **Superconducting Stabilized Local Oscillators**

Enhanced Dynamic Range Through 10-20 dB Reduction in Noise Floor (Important in Clutter, e.g., Littoral Environment)

HIGHLY DISCRIMINATING WIDEBAND FILTERS

High T_c Superconducting Channelized Filters for Analyzing Broad Band Signals

These Filters Provide:

Improved Cut-off Properties to Reduce Out-of-Band Noise & Mitigate Jamming & Interference

Reduce Size & Weight

Very Low Insertion Losses

Improved Linearity

PHASE-SHIFT vs. TIME-DELAY STEERING Frequency Effects

PHASE-SHIFT STEERING

TIME-DELAY STEERING

Frequency Dependent

Frequency Dependent

How Much Delay Is Required?

Consider a 4096 Element Array (64 by 64)

Spacing of 1/2, $x @ 10 \text{ GHz} = 64 \times 1.5 \text{ cm} = 96 \text{ cm}$ (for end fire) (For 60° off broadside, the Delay is 0.866×96 or 83 cm)

Depending on the Index of Refraction, the Optical Delay Line Path Must Be Capable of Being Varied From Near Zero to 33 cm

83 cm Delay / 3×10^{10} cm/sec = 2.77 Nanoseconds Delay

At Best, a Phase Shifter Can Supply 360° or 1 x Thats 0.1 Nanosecond at 10 GHz

THOTONIC CONTROL OF PHASED ARRAYS

Photonic Devices and Optical Techniques Provide Precise Control of the Amplitude and Phase of Microwave Signals, Enabling Rapid and Accurate Beam Steering:

Tunable, Single Mode Fiber Lasers

Highly Dispersive Fibers with Uniform Dispersiveness Over Long Lengths

Optical Techniques for Precisely Controlling Time Delays, RF Amplitude and Phase at the Antenna

New Electro-Optic Materials (e.g., Organic Polymers) have Superior Electro-Optic Coefficients and Lower Power Requirements that Significantly Improve Light Modulator Performance

Photonic Devices and Optical Techniques Will Provide:

Rapid (2µsec) 2-D Beam Scanning Over Wide Angles (Greater That 6)

Degrees) Using True Time Delay Beam Steering

Simultaneous Formation of Multiple Beams at Different Frequencies

Reduced Cost, Weight and Size of Phased Array Systems

Reduced EMI Susceptibility and Crosstalk

Electro-Optic Light Modulators Will Provide:

Broadband (50 GHz) Signal Distribution to/from 100 to 1000 Antenna Elements

OPTICAL CONTROL OF PHASED ARRAY ANTENNAS

Use of photonic technology and optical fibers to implement time-delay steering

Dispersive Fiber Beamformer

Optical switching array for AEGIS dual-band phased array antenna

Photonic technology for X-band array

Ultra Efficient VCSEL

- 1000-Fold Reduction of Threshold Current
- 10⁵ Lower Power Required

- High Efficency Should Permit Arraying for up to 200 Watts Output Power (IR Jammer, etc. applications)
- Low Power Permits On-Chip Transmission of Digital Data
- Overcome R-C Time Constant Problems Increase Computer Speed Up to 50-Fold
- Basis for First Internal FM Laser (Low Noise Capability)

100 GHz Logic

A Recent "JASON" Study Shows:

- A Digitally Synthesized and Steered Surveillance E/M Beam Performs as Well As a True Time Delay-Steered Beam
- Digital Beam Synthesis and Steering Can Provide VERY Large Saving in Cost and Size Over TTD With the SAME Performance

(The advantages of TTD-steered apertures over Phase-Shift-Steered Aperatures are well known; until the advent of multifunctional systems, their cost had been prohibitive.)

Digital Bearn Synthesis, Prs. Alvin M. Despain and John F. Vesecky; 29 April 1997

BACKGROUND - CONVENTIONAL HBT

Collector contacts "outside base contacts ⇒ extrinsic C_{bc}

Large C_{bc}^{ext} increases $C_{bc} \Rightarrow \text{limits } f_{\text{max}} \cong \left[\frac{f_T}{8\pi R_b C_{bc}}\right]$

Cbc reduction with ion implantation not effective at high Vbc and only partially effective at low V_{bc} ⇒ limits large signal performance

WAVE POWER AMPLIFIERS

FRONTSIDE PROCESSING

500 GHz Fmax Demonstrated April 1997!

Low Parasitic HBT

Source of Efficacy:

- 1. Doubles Base Ohmic Contact Conductivity
- 2. Virtually Eliminates Parasitic Base Collector Capacitance
- 3. Significantly Improves R-C Time Constants

Low Parasitic HBT Projections

:1.120 GHz, 2 Watts Using Conventional Semiconductors

2. 120 GHz, 140 Watts Using Wide Bandgap Semiconductors

3. 40 GHz, > 500 Watts With WBG Semiconductor Collector (Probably would require fusion bonding technology)

4. 100 GHz Logic Devices for A/D Converters and For Shift-Register-Like True Time Delay Beam Steering

A. Possibility for Si:Ge

STRUCTURALLY EMBEDDED ANTENNAS

Addressing the Issues of Embedding Emitters & Electronic Components in Structural Composites

Materials Design and Processing Methodology for Structurally Embedded Transmit/Receive Antennas and Associated Cabling Provide:

Weight Reductions of up to 50%

Optimum Use of Limited Platform Real-Estate

Greater System Reliability Due to Increased Robustness of Electrical Connectors and Simplification of Design

High Precision Fabrication Due to the Light Tolerances of Thin Film Technology

Lower Fabrication Costs

Improved Platform Survivability through Signature Reduction

Optically Reconfigurable, Structurally Embedded Antennas

Photonic control of antennas embedded in composite materials

Optical reconfiguration of antenna dimensions & element-to-element spacing

Photoconductive antenna technology

Optically steered, wideband spiral mode microstrip conformal antennas

MULTIFUNCTION RF SYSTEMS

SUMMARY

- PROVIDE CAPABILITY TO DYNAMICALLY ALLOCATE RF RESOURCES TO HIGHEST PRIORITY NEED
- SIGNIFICANTLY REDUCE ANTENNA FARMS ON NAVY PLATFORMS
- SIGNIFICANTLY INCREASE SURVIVABILITY BY REDUCING RADAR CROSS-SECTION
- INTRODUCE BENEFITS OF NEW TECHNOLOGY AT AN AFFORDABLE PRICE (WITH LIKELY COST SAVINGS OVER PRESENT STOVEPIPE SYSTEMS)
- PROVIDE MORE THAN AN ORDER OF MAGNITUDE INCREASE IN RANGE FOR ENGAGING THREATS (AIR PLATFORM)